Proposal/Request for OPERA Brick Studies in the Near Detector Hall

R. Rameika January 7, 2005

Outline

- Overview/introduction
- Status of request
- Installation plan
- Exposure plan
- Potential results

OPERA Bricks

Brick dimensions:

12.5x10.0x7.5 cm³

Contents:

56 (1mm) plates of passive material (i.e. Pb or Fe) alternating with emulsion films

Emulsion films:

produced by Fuji 43 µm layers on 200 µm plastic base

3D vector tracker with sub-micron accuracy

Reconstruct neutrino interaction vertex at micron level resolution

⇒ can actually "see" and measure the primary multiplicity

Measure primary track momentum using multiple scattering

Identify electrons/gammas by shower development

Performance of emulsion films for OPERA

OPERA bricks en route Nagoya to Gran Sasso

Basic Idea: 1) install 4 walls of bricks in NuMI beam, just upstream of the Near Detector

MiniWall: named after OPERA target wall Each MiniWall contain 4x4=16 ECC brick.

~400 kg

Interleave DONUT SF Tracker between walls

X-Y pair SF planes

Idea 2) single brick with forward & backward detectors

Depth along $z \sim 1.5 \text{ m}$

Single Brick (Lyon)

All detectors are recycled components from CHORUS

Plan View

25/Dec./2004

Status of Request

- Informal discussion of idea in Spring 04
 - Presented by M. Komatsu (Nagoya) at last March collaboration meeting parallel session
- Formal document prepared Fall 04; submitted to Program Planning, circulated to MINOS ExCom
 - Program planning circulated to Division/Sections for review as a test beam initiative;
 - Received preliminary comments from ES&H
 - Emulsion processing requirements
 - Indicated requirement will be a detailed MOU and impact analysis by potentially affected parties i.e. MINOS
- Winter 04-05:
 - Posted document for collaboration review
 - Parallel session yesterday
 - Discussion at this meeting

Installation Requirements

- Aluminum support structures to elevate detectors to beam height
- Electrical outlets
- Place detectors

EDDS	120V
Readout II	0.1kW
NIM bin	0.4kW
DAQ host PC	$0.3 \mathrm{kW}$
mise.	0.2kW
Sub total for 120V	$1.0\mathrm{kW}$
SBHD	240V
NIM bin	0.3kW
VME bin	$1.0 \mathrm{kW}$
PCs	0.6kW
Various	$0.6 \mathrm{kW}$
Sub total for 240V	$2.5 \mathrm{kW}$
Total	$3.25\mathrm{kW}$

Expected Event Rates

From D. Michael Nov. 04 PAC talk

Apr-June 05	0.2 - 0.35	e20		
thru 05 shutdown	0.5-0.8	e20		Use 1.5e20
by April 06	1.3 - 2.0	e20		POT to calculate
				101 to calculate
2006	2.4	e20		
2007	2.8	e20		
2008	3.0	e20		
2005	3.5	e20		

Yields ~ 25K ν_{μ} CC; 200 ν_{e}

Exposure Plan

- Begin with 48 bricks (12 per wall) +1 (SBHD)
- Walls 1 and 2 : OPERA studies
 - 1 mm Pb passive absorber
 - Exchange 1 wall per week for 20 weeks
- Walls 3 and 4 : NuMI Beam characterization/neutrino studies
 - Fe absorber, can be changed to do other studies
 - Integrate for ? Weeks (? Tbd)
- SBHD: extract and replace brick ~daily
- Extracted bricks get reconfigured with new films and can then be reinstalled
 - Film development
 - New film refreshing and brick assembly

"Connection" to MINOS

- Wall/SFT set-up (Nagoya)
 - SFT used to predict interactions in a brick.
 - Each beam spill is time stamped in the SFT data readout
 - If a neutrino interaction is LOCATED (after emulsion scanning and reconstruction),
 - Look in MINOS data and see if there is a muon for that spill which is plausably connected
 - Nagoya will make all emulsion data available [digitized m-files (all segments) and vertex/track location DONUT style data]
- Single Brick set-up (Lyon)
 - Need to check on this; initial request similar

Summary & Plans

- Complete defining all requirements for installation and operation
 - Electrical requirements underground
 - Emulsion development (muon lab dark room)
 - Refreshing facility (? underground)
- Address any concerns or issues uncovered by MINOS collaboration
- Develop Test Beam MOU, provide all documentation required for safety reviews
- Set up funding method: request states that funding for all activities will be provided by Japan and Lyon
- Possible schedule : begin ~ May, go till shutdown, evaluate progress and determine whether continuing is beneficial